Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Med Chem ; 65(15): 10523-10533, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920072

RESUMO

Antimicrobial peptides (AMPs) have attracted great attention as next generation antibiotics for the treatment of multidrug-resistant (MDR) bacterial infections. Poor proteolytic stability has however undermined clinical applications of AMPs. A novel peptide cyclization approach is described to enhance the in vivo antibacterial activity of AMPs. Bicyclic antimicrobial peptides were synthesized by cross-linking the ε-amino groups of three lysine residues with a 1,3,5-trimethylene benzene spacer. In a proof of principal study, four bicyclic peptides were synthesized from the cationic AMP OH-CM6. One bicyclic peptide retained strong antimicrobial activity and low toxicity but exhibited a prolonged half-life in serum. Antibacterial activity was consequently improved in vivo without renal or hepato-toxicity. The novel peptide cyclization approach represents an important tool for enhancing AMP proteolytic stability for improved treatment of bacterial infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Bacterianas , Humanos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/toxicidade , Peptídeos Antimicrobianos , Infecções Bacterianas/tratamento farmacológico , Lisina/química , Lisina/farmacologia , Testes de Sensibilidade Microbiana
2.
Eur J Pharm Biopharm ; 179: 11-25, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028151

RESUMO

Innate defense regulators (IDRs) are synthetic host-defense peptides (HDPs) with broad-spectrum anti-infective properties, including immunomodulatory, anti-biofilm and direct antimicrobial activities. A lack of pharmacokinetic data about these peptides hinders their development and makes it challenging to fully understand how they work in vivo since their mechanism of action is dependent on tissue concentrations of the peptide. Here, we set out to define in detail the pharmacokinetics of a well-characterized IDR molecule, IDR-1018. To make the peptide traceable, it was radiolabeled with the long-lived gamma-emitting isotope gallium-67. After a series of bench-top characterizations, the radiotracer was administered to healthy mice intravenously (IV) or subcutaneously (SQ) at various dose levels (2.5-13 mg/kg). Nuclear imaging and ex-vivo biodistributions were used to quantify organ and tissue uptake of the radiotracer over time. When administered as an IV bolus, the distribution profile of the radiotracer changed as the dose was escalated. At 2.5 mg/kg, the peptide was well-tolerated, poorly circulated in the blood and was cleared predominantly by the reticuloendothelial system. Higher doses (7 and 13 mg/kg) as an IV bolus were almost immediately lethal due to respiratory arrest; significant lung uptake of the radiotracer was observed from nuclear scans of these animals, and histological examination found extensive damage to the pulmonary vasculature and alveoli. When administered SQ at a dose of 3 mg/kg, radiolabeled IDR-1018 was rapidly absorbed from the site of injection and predominately cleared renally. Apart from the SQ injection site, no other tissue had a concentration above the minimum inhibitory concentration that would enable this peptide to exert direct antimicrobial effects against most pathogenic bacteria. Tissue concentrations were sufficient, however, to disrupt microbial biofilms and alter the host immune response. Overall, this study demonstrated that the administration of synthetic IDR peptide in vivo is best suited to local administration which avoids some of the issues associated with peptide toxicity that are observed when administered systemically by IV injection, an issue that will have to be addressed through formulation.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/toxicidade , Imunidade Inata , Camundongos , Testes de Sensibilidade Microbiana , Distribuição Tecidual
3.
Langmuir ; 38(21): 6623-6637, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35587380

RESUMO

Cationic biocides have been widely used as active ingredients in personal care and healthcare products for infection control and wound treatment for a long time, but there are concerns over their cytotoxicity and antimicrobial resistance. Designed lipopeptides are potential candidates for alleviating these issues because of their mildness to mammalian host cells and their high efficacy against pathogenic microbial membranes. In this study, antimicrobial and cytotoxic properties of a de novo designed lipopeptide, CH3(CH2)12CO-Lys-Lys-Gly-Gly-Ile-Ile-NH2 (C14KKGGII), were assessed against that of two traditional cationic biocides CnTAB (n = 12 and 14), with different critical aggregation concentrations (CACs). C14KKGGII was shown to be more potent against both bacteria and fungi but milder to fibroblast host cells than the two biocides. Biophysical measurements mimicking the main features of microbial and host cell membranes were obtained for both lipid monolayer models using neutron reflection and small unilamellar vesicles (SUVs) using fluorescein leakage and zeta potential changes. The results revealed selective binding to anionic lipid membranes from the lipopeptide and in-membrane nanostructuring that is distinctly different from the co-assembly of the conventional CnTAB. Furthermore, CnTAB binding to the model membranes showed low selectivity, and its high cytotoxicity could be attributed to both membrane lysis and chemical toxicity. This work demonstrates the advantages of the lipopeptides and their potential for further development toward clinical application.


Assuntos
Anti-Infecciosos , Desinfetantes , Animais , Antibacterianos/química , Anti-Infecciosos/toxicidade , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Desinfetantes/farmacologia , Lipopeptídeos/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana
4.
ACS Appl Mater Interfaces ; 14(1): 159-171, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929082

RESUMO

An "antibiotic-free strategy" provides a viable option to address bacterial infections, especially for the "superbug" challenge. However, the undesirable antibacterial activity of antibiotic-free agents hinders their practical applications. In this study, we developed a combination antibacterial strategy of coupling peptide-drug therapy with chemodynamic therapy (CDT) to achieve the effective bacterial inhibition. An amphiphilic oligopeptide (LAOOH-OPA) containing a therapeutic unit of D(KLAK)2 peptide and a hydrophobic linoleic acid hydroperoxide (LAHP) was designed. The positively charged D(KLAK)2 peptide with an α-helical conformation enabled rapid binding with microbial cells via electrostatic interaction and subsequent membrane insertion to deactivate the bacterial membrane. When triggered by Fe2+, moreover, LAHP could generate singlet oxygen (1O2) to elicit lipid bilayer leakage for enhanced bacteria inhibition. In vitro assays demonstrated that the combination strategy possessed excellent antimicrobial activity not only merely toward susceptible strains (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) but also toward methicillin-resistant Staphylococcus aureus (MRSA). On the mouse skin abscess model induced by S. aureus, self-assembled LAOOH-OPA exhibited a more significant bacteria reduction (1.4 log10 reduction) in the bioburden compared to that of the standard vancomycin (0.9 log10 reduction) without apparent systemic side effects. This combination antibacterial strategy shows great potential for effective bacterial inhibition.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Ácidos Linoleicos/uso terapêutico , Peróxidos Lipídicos/uso terapêutico , Nanopartículas/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/toxicidade , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Feminino , Ácidos Linoleicos/toxicidade , Peróxidos Lipídicos/toxicidade , Camundongos Endogâmicos BALB C , Nanopartículas/toxicidade , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos dos fármacos
5.
ACS Appl Mater Interfaces ; 14(1): 245-258, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34964342

RESUMO

The emergence of multidrug-resistant microorganisms has been termed one of the most common global health threats, emphasizing the discovery of new antibacterial agents. To address this issue, we engineered peptides harboring "RWWWR" as a central motif plus arginine (R) end-tagging and then tested them in vitro and in vivo. Our results demonstrate that Pep 6, one of the engineered peptides, shows great potential in combating Escherichia coli bacteremia and the Staphylococcus aureus skin burn infection model, which induces a 62-90% reduction in bacterial burden. Remarkably, after long serial passages of S. aureus and E. coli for 30 days, Pep 6 is still highly efficient in killing pathogens, compared with 64- and 128-fold increase in minimal inhibitory concentrations (MICs) for vancomycin and polymyxin B, respectively. We also found that Pep 6 exhibited robust biofilm-inhibiting activity and eliminated 61.33% of the mature methicillin-resistant Staphylococcus aureus (MRSA) biofilm with concentration in the MIC level. These results suggest that the RWWWR motif and binding of arginine end-tagging could be harnessed as a new agent for combating multidrug-resistant bacteria.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Biofilmes/efeitos dos fármacos , Queimaduras/tratamento farmacológico , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Feminino , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Sepse/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Células Vero , Cicatrização/efeitos dos fármacos
6.
Carbohydr Polym ; 269: 118258, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294293

RESUMO

Marine polysaccharides or oligosaccharides have potential to promote wound healing due to their biocompatibility and physicochemical properties. However, microbial infection delays wound healing process, and novel antimicrobial wound dressings are urgently needed. Here, agarose oligosaccharides (AGO) obtained from marine red algae were used as a reducing and stabilizer for green synthesis of silver nanoparticles (AgNPs), and further successfully connected with odorranain A (OA), one of antimicrobial peptides (AMPs), to obtain a novel composite nanomaterial (AGO-AgNPs-OA). Transmission electron microscopy (TEM) and Malvern particle size analyzer showed that AGO-AgNPs-OA was spherical or elliptic with average size of about 100 nm. Circular dichroism (CD) spectroscopy showed that AGO-AgNPs stabilized the α-helical structure of OA. AGO-AgNPs-OA showed stronger anti-bacterial activities than AGO-AgNPs, and had good biocompatibility and significant promoting effect on wound healing. Our data suggest that AMPs conjugated marine oligosaccharides and AgNPs may be effective and safe antibacterial materials for wound therapy.


Assuntos
Antibacterianos/uso terapêutico , Antifúngicos/uso terapêutico , Bandagens , Nanopartículas Metálicas/uso terapêutico , Sefarose/química , Cicatrização/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Antifúngicos/química , Antifúngicos/toxicidade , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Oligossacarídeos/síntese química , Oligossacarídeos/química , Oligossacarídeos/toxicidade , Ratos Sprague-Dawley , Rodófitas/química , Sefarose/síntese química , Sefarose/toxicidade , Prata/química , Prata/uso terapêutico , Prata/toxicidade , Pele/efeitos dos fármacos
7.
Eur J Med Chem ; 223: 113635, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34147743

RESUMO

In pursuit of ultrashort peptide-based antifungals, a new structural class, His(2-aryl)-Trp-Arg is reported. Structural changes were investigated on His-Trp-Arg scaffold to demonstrate the impact of charge and lipophilic character on the biological activity. The presence and size of the aryl moiety on imidazole of histidine modulated overall amphiphilic character, and biological activity. Peptides exhibited IC50 of 0.37-9.66 µg/mL against C. neoformans. Peptide 14f [His(2-p-(n-butyl)phenyl)-Trp-Arg-OMe] exhibited two-fold potency (IC50 = 0.37 µg/mL, MIC = 0.63 µg/mL) related to amphotericin B, without any cytotoxic effects up to 10 µg/mL. Peptide 14f act by nuclear fragmentation, membranes permeabilization, disruption and pore formations in the microbial cells as determined by the mechanistic studies employing Trp-quenching, CLSM, SEM, and HR-TEM. The amalgamation of short sequence, presence of appropriate aryl group on l-histidine, potent anticryptococcal activity, no cytotoxicity, and detailed mechanistic studies directed to the identification of 14f as a new antifungal structural lead.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Antifúngicos/síntese química , Antifúngicos/toxicidade , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Chlorocebus aethiops , Histidina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/toxicidade , Relação Estrutura-Atividade , Células Vero
8.
Mar Drugs ; 18(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321960

RESUMO

Antimicrobial peptides (AMPs) are not only cytotoxic towards host pathogens or cancer cells but also are able to act as immunomodulators. It was shown that some human and non-human AMPs can interact with complement proteins and thereby modulate complement activity. Thus, AMPs could be considered as the base for complement-targeted therapeutics development. Arenicins from the sea polychaete Arenicola marina, the classical example of peptides with a ß-hairpin structure stabilized by a disulfide bond, were shown earlier to be among the most prospective regulators. Here, we investigate the link between arenicins' structure and their antimicrobial, hemolytic and complement-modulating activities using the derivative Ar-1-(C/A) without a disulfide bond. Despite the absence of this bond, the peptide retains all important functional activities and also appears less hemolytic in comparison with the natural forms. These findings could help to investigate new complement drugs for regulation using arenicin derivatives.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Proteínas de Helminto/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Inativadores do Complemento/química , Inativadores do Complemento/toxicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Helminto/química , Proteínas de Helminto/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Conformação Proteica , Coelhos , Carneiro Doméstico , Relação Estrutura-Atividade
9.
Int J Nanomedicine ; 15: 8097-8108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116520

RESUMO

BACKGROUND: Metallic nanoparticles (NPs) are highly exploited in manufacturing and medical processes in a broad spectrum of industrial applications and in the academic sectors. Several studies have suggested that many metallic nanomaterials including those derived by silver (Ag) are entering the ecosystem to cause significant toxic consequences in cell culture and animal models. However, ecotoxicity studies are still receiving limited attention when designing functionalized and non.-functionalized AgNPs. OBJECTIVE: This study aimed to investigate different ecotoxicological profiles of AgNPs, which were analyzed in two different states: in pristine form uncoated AgNPs and coated AgNPs with the antimicrobial peptide indolicidin. These two types of AgNPs are exploited for a set of different tests using Daphnia magna and Raphidocelis subcapitata, which are representatives of two different levels of the aquatic trophic chain, and seeds of Lepidium sativum, Cucumis sativus and Lactuca sativa. RESULTS: Ecotoxicological studies showed that the most sensitive organism to AgNPs was crustacean D. magna, followed by R. subcapitata and plant seeds, while AgNPs coated with indolicidin (IndAgNPs) showed a dose-dependent decreased toxicity for all three. CONCLUSION: The obtained results demonstrate that high ecotoxicity induced by AgNPs is strongly dependent on the surface chemistry, thus the presence of the antimicrobial peptide. This finding opens new avenues to design and fabricate the next generation of metallic nanoparticles to ensure the biosafety and risk of using engineered nanoparticles in consumer products.


Assuntos
Peptídeos Catiônicos Antimicrobianos/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Crustáceos/efeitos dos fármacos , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento , Daphnia/citologia , Daphnia/efeitos dos fármacos , Germinação/efeitos dos fármacos , Lepidium/efeitos dos fármacos , Lepidium/crescimento & desenvolvimento , /crescimento & desenvolvimento , Nanopartículas Metálicas/ultraestrutura , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Testes de Toxicidade
10.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947921

RESUMO

There has been an increasing interest in the development of antimicrobial peptides (AMPs) and their synthetic mimics as a novel class of antibiotics to overcome the rapid emergence of antibiotic resistance. Recently, phenylglyoxamide-based small molecular AMP mimics have been identified as potential leads to treat bacterial infections. In this study, a new series of biphenylglyoxamide-based small molecular AMP mimics were synthesised from the ring-opening reaction of N-sulfonylisatin bearing a biphenyl backbone with a diamine, followed by the conversion into tertiary ammonium chloride, quaternary ammonium iodide and guanidinium hydrochloride salts. Structure-activity relationship studies of the analogues identified the octanesulfonyl group as being essential for both Gram-positive and Gram-negative antibacterial activity, while the biphenyl backbone was important for Gram-negative antibacterial activity. The most potent analogue was identified to be chloro-substituted quaternary ammonium iodide salt 15c, which possesses antibacterial activity against both Gram-positive (MIC against Staphylococcus aureus = 8 µM) and Gram-negative bacteria (MIC against Escherichia coli = 16 µM, Pseudomonas aeruginosa = 63 µM) and disrupted 35% of pre-established S. aureus biofilms at 32 µM. Cytoplasmic membrane permeability and tethered bilayer lipid membranes (tBLMs) studies suggested that 15c acts as a bacterial membrane disruptor. In addition, in vitro toxicity studies showed that the potent compounds are non-toxic against human cells at therapeutic dosages.


Assuntos
Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptidomiméticos/síntese química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Biofilmes/efeitos dos fármacos , Compostos de Bifenilo/química , Linhagem Celular , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química
11.
ACS Infect Dis ; 6(9): 2369-2385, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786286

RESUMO

Cytotoxic frog antimicrobial peptide Temporin L (TempL) is an attractive molecule for the design of lead antimicrobial agents due to its short size and versatile biological activities. However, noncytotoxic TempL variants with desirable biological activities have rarely been reported. TempL analogue Q3K,TempL is water-soluble and possesses a significant antiendotoxin property along with comparable cytotoxicity to TempL. A phenylalanine residue, located at the hydrophobic face of Q3K,TempL and the "d" position of its phenylalanine zipper sequence, was replaced with a cationic lysine residue. This analogue, Q3K,F8K,TempL, showed reduced hydrophobic moment and was noncytotoxic with lower antimicrobial activity. Interestingly, swapping between tryptophan at the fourth and serine at the sixth positions turned Q3K,F8K,TempL totally amphipathic as reflected by its helical wheel projection with clusters of hydrophobic and hydrophilic residues and the highest hydrophobic moment among these peptides. Surprisingly, this analogue, SW,Q3K,F8K,TempL, was as noncytotoxic as Q3K,F8K,TempL but showed augmented antimicrobial and antiendotoxin properties, comparable to that of TempL and Q3K,TempL. SW,Q3K,F8K,TempL exhibited appreciable survival of mice against P. aeruginosa infection and a lipopolysaccharide (LPS) challenge. Unlike TempL and Q3K,TempL, SW,Q3K,F8K,TempL adopted an unordered secondary structure in bacterial membrane mimetic lipid vesicles and did not permeabilize them or depolarize the bacterial membrane. Overall, the results demonstrate the design of a nontoxic TempL analogue that possesses clusters of hydrophobic and hydrophilic residues with impaired secondary structure and shows a nonmembrane-lytic mechanism and in vivo antiendotoxin and antimicrobial activities. This paradigm of design of antimicrobial peptide with clusters of hydrophobic and hydrophilic residues and high hydrophobic moment but low secondary structure could be attempted further.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Camundongos , Estrutura Secundária de Proteína
12.
Arch Biochem Biophys ; 691: 108487, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32710881

RESUMO

Antimicrobial peptides (AMP) are molecules with a broad spectrum of activities that have been identified in most living organisms. In addition, synthetic AMPs designed from natural polypeptides have been largely investigated. Here, we designed a novel AMP using the amino acid sequence of a plant trypsin inhibitor from Adenanthera pavonina seeds (ApTI) as a template. The 176 amino acid residues ApTI sequence was cleaved in silico using the Collection of Antimicrobial Peptides (CAMPR3), through the sliding-window method. Further improvements in AMP structure were carried out, resulting in adepamycin, an AMP designed from ApTI. Adepamycin showed antimicrobial activity from 0.9 to 3.6 µM against Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus strains. Moreover, this peptide also displayed activity against Candida albicans and Candida tropicalis. No toxic effects were observed on healthy human cells. Studies on the mechanism of action of adepamycin were carried out using an E. coli and C. tropicalis. Adepamycin triggers membrane disturbances, leading to intracellular nucleic acids release in E. coli. For C. tropicalis, an initial interference with the plasma membrane integrity is followed by the formation of intracellular reactive oxygen species (ROS), leading to apoptosis. Structurally, adepamycin was submitted to circular dichroism spectroscopy, molecular modeling and molecular dynamics simulations, revealing an environment-dependent α-helical structure in the presence of 2,2,2- trifluoroethanol (TFE) and in contact with mimetic vesicles/membranes. Therefore, adepamycin represents a novel lytic AMP with dual antibacterial and antifungal properties.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Antibacterianos/síntese química , Antibacterianos/toxicidade , Antifúngicos/síntese química , Antifúngicos/toxicidade , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fabaceae/química , Hemólise/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Fosfatidilgliceróis/química
13.
Sci Rep ; 10(1): 10145, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576874

RESUMO

Antimicrobial peptides have attracted attention as alternatives to conventional antibiotics. Previously, a novel antimicrobial peptide, melectin, consisting of 18 amino acids was isolated from the venom of a bee, Melecta albifrons. Here, we investigated the antibacterial activity of melectin against drug-resistant bacteria. Melectin showed broad-spectrum antimicrobial activity but low cytotoxicity and no hemolytic activity. Melectin maintained its antimicrobial activity at physiological salt concentrations. Melectin is an α-helical structure that binds to the bacterial membrane via electrostatic interactions and kills bacteria in a short time by bacterial membrane targeting. Collectively, our results suggest that melectin has antibacterial activity and anti-inflammatory activity.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Venenos de Abelha/química , Aminoácidos , Anti-Inflamatórios , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bactérias/citologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Farmacorresistência Bacteriana , Fibroblastos/efeitos dos fármacos , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Tolerância ao Sal , Cloreto de Sódio , Eletricidade Estática
14.
Amino Acids ; 52(5): 725-741, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32367434

RESUMO

Increasing resistance in antibiotic and chemotherapeutic treatments has been pushing studies of design and evaluation of bioactive peptides. Designing relies on different approaches from minimalist sequences and endogenous peptides modifications to computational libraries. Evaluation relies on microbiological tests. Aiming a deeper understanding, we chose the octapeptide Jelleine-I (JI) for its selective and low toxicity profile, designed small modifications combining the substitutions of Phe by Trp and Lys/His by Arg and tested the antimicrobial and anticancer activity on melanoma cells. Biophysical methods identified environment-dependent modulation of aggregation, but critical aggregation concentrations of JI and analogs in buffer show that peptides start membrane interactions as monomers. The presence of model membranes increases or reduces the partial aggregation of peptides. Compared to JI, analog JIF2WR shows the lowest tendency to aggregation on bacterial model membranes. JI and analogs are lytic to model membranes. Their composition-dependent performance indicates preference for the higher charged anionic bilayers in line with their superior performance toward Staphylococcus aureus and Streptococcus pneumoniae. JIF2WR presented the higher partitioning, higher lytic activity and lower aggregated contents. Despite these increased membranolytic activities, JIF2WR exhibited comparable antimicrobial activity in relation to JI at the expenses of some loss in selectivity. We found that the substitution Phe/Trp (JIF2W) tends to decrease antimicrobial but to increase anticancer activity and aggregation on model membranes and the toxicity toward human cells. However, the concomitant substitution Lys/His by Arg (JIF2WR) modulates some of these tendencies, increasing both the antimicrobial and the anticancer activity while decreasing the aggregation tendency.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Hemólise/efeitos dos fármacos , Melanoma/patologia , Oligopeptídeos/toxicidade , Animais , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/química , Arginina/química , Candida/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Camundongos , Oligopeptídeos/química , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Triptofano/química
15.
Exp Parasitol ; 215: 107930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464221

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, is responsible for the infection of millions of people worldwide and it is a public health problem, without an effective cure. Four fragments with antimicrobial potential from the hemocyanin of Penaeus monodon shrimp were identified using a computer software AMPA. The present study aimed to evaluate the antichagasic effect of these four peptides (Hmc364-382, Hmc666-678, Hmc185-197 and Hmc476-498). The peptides were tested against the epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi Y strain (benznidazole-resistant strain) and cytotoxicity in mammalian cells was evaluated against LLC-MK2 lineage cells. Two fragments (Hmc364-382, Hmc666-678) showed activity against the epimastigote and trypomastigote forms and their selectivity index (SI) was calculated. The Hmc364-382 peptide was considered the most promising (SI > 50) one and it was used for further studies, using flow cytometry analyses with specific molecular probes and scanning electron microscopy (SEM). Hmc364-382 was able to induce cell death in T. cruzi through necrosis, observed by loss of membrane integrity in flow cytometry analyses and pore formation in SEM. Overall, Hmc364-382 open perspectives to the development of new antichagasic agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Hemocianinas/farmacologia , Penaeidae/química , Trypanosoma cruzi/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/toxicidade , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Citometria de Fluxo , Hemocianinas/toxicidade , Concentração Inibidora 50 , Macaca mulatta , Microscopia Eletrônica de Varredura , Fatores de Tempo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura
16.
Mar Drugs ; 18(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290449

RESUMO

The antimicrobial peptide (AMP) piscidin was identified from Epinephelus lanceolatus and demonstrated to possess antimicrobial and immune-related functions. Supplementation of feed with recombinant Epinephelus lanceolatus piscidin (rEP)-expressing yeast pellets may minimize the excessive use of antibiotics and control pathogens in aquaculture or animal husbandry. However, before implementing rEP as a supplement, it is necessary to understand whether it harbors any toxicity. Since toxicological information on the topic is scarce, the present investigation was carried out to test whether rEP exhibits allergenic and/or toxic effects. In an oral acute toxicity test (OECD 425), Sprague Dawley (SD) rats were administered rEP dissolved in reverse osmosis water, yielding an LD50 > 5000 mg/kg (no observed animal death). The compound was therefore classified as non-toxic by oral administration. In an acute respiratory toxicity test (OECD 403), heads and noses of SD rats were exposed to liquid aerosol for 4 h (the highest concentration that could be administered without causing any animal death), and a lethal concentration (LC50) > 0.88 mg/L was obtained. The mass medium aerodynamics diameter (MMAD) of rEP aerosol particles was 8.18 µm and mass medium aerodynamics diameter (GSD) was 3.04, which meant that 25.90% could enter the airway (<4 µm) of a rat, and 58.06% (<10 µm) could be inhaled by humans. An ocular irritation test (OECD 405) with rEP powder was performed on New Zealand White (NZW) rabbits. Signs of irritation included conjunctival swelling and diffuse flushing 1 h after administration. The signs were less apparent after 24 h and disappeared after 72 h. The classification assigned to the powder was mild eye irritation. Skin sensitization was performed for a local lymphoproliferative test (OECD 442B) using BALB/c mice, with the highest soluble concentration of the rEP considered to be 100% test substance; formulations were diluted to 50% and 25%, and bromodeoxyuridine (BrdU) incorporation was used to measure the degree of lymphocyte proliferation. The stimulation indexes (SIs) were 1.06 (100%), 0.44 (50%), and 0.77 (25%), all of which were less than the cutoff value for a positive sensitization result (1.6). Negative response was also seen in the bacterial reverse mutation test (OECD 471), and no chromosomal effects on Chinese hamster ovary (CHO)-K1 cells were observed (OECD 487). Based on these six toxicity tests, rEP showed neither acute toxic effects in experimental animals nor mutagenicity. Thus, rEP can be considered safe for use in subsequent research on its application as a feed additive for poultry, cattle, or aquatic animals.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Peixes/química , Peixes , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Feminino , Proteínas de Peixes/farmacologia , Proteínas de Peixes/toxicidade , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese , Pichia/genética , Coelhos , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
17.
PLoS One ; 15(3): e0228740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214347

RESUMO

Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines. To address this problem, new antibiotic-like molecules that directly kill or inhibit the growth of microorganisms are necessary, where antimicrobial peptides (AMPs) can be of great help. In this work, the ferrocene molecule, one active compound with low levels of in vivo toxicity, was coupled to the N-terminus of the RP1 peptide (derived from the human chemokine CXCL4), aiming to evaluate how this change modifies the structure, biological activity, and toxicity of the peptide. The peptide and the conjugate were synthesized using the solid phase peptide synthesis (SPPS). Circular dichroism assays in PBS showed that the RP1 peptide and its conjugate had a typical spectrum for disordered structures. The Fc-RP1 presented anti-amastigote activity against Leishmania amazonensis (IC50 = 0.25 µmol L-1). In comparison with amphotericin B, a second-line drug approved for leishmaniasis treatment, (IC50 = 0.63 µmol L-1), Fc-RP1 was more active and showed a 2.5-fold higher selectivity index. The RP1 peptide presented a MIC of 4.3 µmol L-1 against S. agalactiae, whilst Fc-RP1 was four times more active (MIC = 0.96 µmol L-1), indicating that ferrocene improved the antimicrobial activity against Gram-positive bacteria. The Fc-RP1 peptide also decreased the minimum inhibitory concentration (MIC) in the assays against E. faecalis (MIC = 7.9 µmol L-1), E. coli (MIC = 3.9 µmol L-1) and S. aureus (MIC = 3.9 µmol L-1). The cytotoxicity of the compounds was tested against HaCaT cells, and no significant activity at the highest concentration tested (500 µg. mL-1) was observed, showing the high potential of this new compound as a possible new drug. The coupling of ferrocene also increased the vesicle permeabilization of the peptide, showing a direct relation between high peptide concentration and high carboxyfluorescein release, which indicates the action mechanism by pore formation on the vesicles. Several studies have shown that ferrocene destabilizes cell membranes through lipid peroxidation, leading to cell lysis. It is noteworthy that the Fc-RP1 peptide synthesized here is a prototype of a bioconjugation strategy, but it still is a compound with great biological activity against neglected and fish diseases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Compostos Ferrosos/química , Metalocenos/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bactérias/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Permeabilidade
18.
Biochim Biophys Acta Biomembr ; 1862(6): 183260, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142822

RESUMO

Because of their potential as novel antibiotic agents, antimicrobial peptides (AMPs) have generated considerable interest. The mechanism of bacterial toxicity of AMPs often involves the disruption and/or permeabilization of the bacterial membrane; even those that act intracellularly first have to traverse the membrane. In this work we have explored the incorporation of the fluorinated aromatic amino acids fluoro-Phe and fluoro-Tyr into the Trp- and Arg-rich AMP tritrpticin, and investigated their role in the membrane binding properties and the antimicrobial activity of the peptide. Fluorinated peptides were obtained with good yield by recombinant expression of tritrpticin as a calmodulin-fusion protein in Escherichia coli. Cells were grown in the presence of glyphosate, an inhibitor of aromatic amino acid biosynthesis, and the peptides were released by proteolysis from the purified fusion protein. By using SDS micelles, as a simplified model of the bacterial cytoplasmic membrane, we could study the peptide-membrane interactions and the preferred location of individual fluorinated residues in the micelles by 19F NMR spectroscopy. Solvent-perturbation 19F NMR measurements revealed that para-fluoro-Phe residues are embedded deeply in the hydrophobic region of the micelles. On the other hand, 3-fluoro-Tyr residues introduced in tritrpticin were located near the surface of the micelles with high solvent exposure, while 2-fluoro-Tyr sidechains were less solvent exposed. In combination with the outcome of determinations of their antimicrobial activity, our 19F NMR results indicate that the higher solvent exposure of Tyr residues correlates with a decrease of the antimicrobial potency. This different role of Tyr can likely be extended from tritrpticin to other cationic AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Flúor , Espectroscopia de Ressonância Magnética/métodos , Oligopeptídeos/química , Tirosina/fisiologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Membrana Celular/metabolismo , Micelas , Oligopeptídeos/metabolismo , Dodecilsulfato de Sódio
19.
Colloids Surf B Biointerfaces ; 187: 110835, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32033885

RESUMO

Due to rapid development of bacterial resistance against antibiotics, an emerging health crisis is underway, where 'simple' infections may no longer be treatable. Antimicrobial peptides (AMPs) constitute a class of substances attracting interest in this context. So far, research on AMPs has primarily focused on the identification of potent and selective peptides, as well as on the action mode of such peptides. More recently, there has been an increasing awareness that the delivery of AMPs is challenging due to their size, net positive charge, amphiphilicity, and proteolytic susceptibility. Hence, successful development of AMP therapeutics will likely require also careful design of efficient AMP delivery systems. In the present brief review, we discuss microgels, as well as related polyelectrolyte complexes and macroscopic hydrogels, as delivery systems for AMPs. In doing so, key factors for peptide loading and release are outlined and exemplified, together with consequences of this for functional performance relating to antimicrobial effects and cell toxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Portadores de Fármacos/química , Hidrogéis/química , Microgéis/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Humanos
20.
Langmuir ; 36(7): 1737-1744, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32009405

RESUMO

The function and properties of peptide-based materials depend not only on the amino acid sequence but also on the molecular conformations. In this paper, we chose a series of peptides Gm(XXKK)nX-NH2 (m = 0, 3; n = 2, 3; X = I, L, and V) as the model molecules and studied the conformation regulation through N-terminus lipidation and their formulation with surfactants. The structural and morphological transition of peptide self-assemblies have also been investigated via transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, and small-angle neutron scattering. With the terminal alkylation, the molecular conformation changed from random coil to ß-sheet or α-helix. The antimicrobial activities of alkylated peptide were different. C16-G3(IIKK)3I-NH2 showed antimicrobial activity against Streptococcus mutans, while C16-(IIKK)2I-NH2 and C16-G3(IIKK)2I-NH2 did not kill the bacteria. The surfactant sodium dodecyl sulfonate could rapidly induce the self-assemblies of alkylated peptides (C16-(IIKK)2I-NH2, C16-G3(IIKK)2I-NH2, C16-G3(VVKK)2V-NH2) from nanofibers to micelles, along with the conformation changing from ß-sheet to α-helix. The cationic surfactant hexadecyl trimethyl ammonium bromide made the lipopeptide nanofibers thinner, and nonionic surfactant polyoxyethylene (23) lauryl ether (C12EO23) induced the nanofibers much more intensively. Both the activity and the conformation of the α-helical peptide could be modulated by lipidation. Then, the self-assembled morphologies of alkylated peptides could also be further regulated with surfactants through hydrophobic, electrostatic, and hydrogen-bonding interactions. These results provided useful strategies to regulate the molecular conformations in peptide-based material functionalization.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Tensoativos/química , Acilação , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bacillus subtilis/efeitos dos fármacos , Cetrimônio/química , Escherichia coli/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Nanofibras/química , Polietilenoglicóis/química , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Streptococcus mutans/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...